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Takashi Yanagisawa

Fundamental Physics Section, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki
305, Japan

Received 26 Janvary 1993, in final form 15 March 1993

Abstract. We study the ground state of the mixed-valence system by renormalization group
theory and numerical exact diagonalizations. A 1/N expansion is applied to examine the
Ruderman—Kittel-Kasuya—Yosida (RKKY) interaction effects. We show that the antiferromagnetic
RKKY interaction J;; grows as scaling proceeds and reduces the strength of s—d coupling J. This
property clarifies the competition between the local Kondo effect and intersite REKY interactions,
Scaling theory predicts that for small J;; < Ty the low-energy scale is given by AE =~ Tie ™,
and for large Ji;, AE = (1/J; ,-)"". which agree well with our numerical diagonalizations. In the
intermediate regime where the Kondo and rEKY effects cancel each other, we discuss whether
our results support the existence of a zero of By =dJf/dIn D.

1. Intreduction

There has been recent interest in the competition between the Ruderman-Kittel-Kasuya—
Yosida (RKKY) interactions and the local Kondo effects in order to understand the formation
of the heavy-fermion state [1-7]. This problem is important since it may have some
relevance to the oxide superconductors as well as heavy fermions. It is generally agreed that
heavy fermions are classified into three groups according to their ground-state properties:
superconducting, magnetically ordered, or paramagnetic with an enhanced specific heat
coefficient. The rich magnetic structures found in the latter two cases are often explained as
being due to competition between the local Kondo effect and the RKKY intersite interactions.
Many heavy-fermion samples show antiferromagnetic ordering at low temperatures [8,9].
Even in the cases categorized as non-magnetic Fermi liquids such as CeAls, the small
magnetic moments involved are observed [10]. Another simple question arising from a
large number of experiments is why ferromagnetic short- or long-range orderings in heavy
fermions are hardly observed in zero magnetic field. These issues may be explained by
clarifying the properties of RKKY interactions.
. There are apparently two energy scales J;; and Tk where J;; is the RKKY exchange energy
and T is the Kondo temperature. We can easily identify two regimes. (i) The Kondo regime
when the Kondo temperature Ty is much larger than the RKKY coupling J;;; in this regime
the Kondo effect takes place in each individual site with quenching of each local spin. (ii)
The RKKY regime when Ty is much smaller than Jij; here a collective state of impurities
is formed and localized spins are ordered ferromagnetically or antiferromagnetically. Our
understanding is still gualitative because there is no existing theory capable of treating the
local Kondo fluctuations and the intersite couplings.
The purpose of this paper is to investigate the ground state of mixed-valence systems by
the renormalization group theory [11-18] and the numerical exact diagonalization method.
A combination of analytic and numerical methods will provide us with useful information
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on the heavy fermions. Applying perturbation theory in terms of hybridization in the
atomic limit [19,20], it appears that the energy shows logarithmic dependence on the high-
energy cutoff D of the conduction band. Logarithmic dependence is a characteristic of a
renormalizable theory, suggesting a scaling property of the model. In the original ‘poor
man’s’ derivation of the scaling equation [11], we integrate out the high-energy region
D — AD < |w| < D and renormalize parameters to include its effects. Scaling equations
are defined by

,B;:d.l/d]nD ,B‘_,:d.]”/d[nD (1.1)

where J is the 5—d exchange coupling. A zero of both 8; and B;; shows the existence of
a phase transition. A zero of just one of them indicates a crossover phenomenon. Note
that we can set up the simplified model such that no new RKKY couplings are generated
by scaling, i.e. §;; = 0. For example, the model proposed by Jones et @/ [1] contains no
intersite interactions except the one introduced to the Hamiltonian by hand. For a model of
this kind, a zero of 8, shows the existence of a phase transition. Thus one can say that in the
language of scaling theory, Jones et al have demonstrated that 8; has a zero. In this paper
we examine the renormalization of both J and J;;. Since this approach uses formulation in
the language of perturbation theory, our equations work well in the weak-coupling region.
The numerical calculations may make up for any shortcomings.

We show that scaling properties of J;; sensitively depend on whether the RKKY
interactions are ferromagnetic or antiferromagnetic. We insist that the ferromagnetic state is
unstable relative to the momentum-quenched state. This may be an important result for us
in considering the magnetic orderings in heavy fermions. In fact, the above properties tell
us why we rarely observe ferromagnetic orderings in heavy-fermion materials. In contrast,
the antiferromagnetic RKKY interactions grow in the scaling processes and produce effects
to reduce J. A crossover between the Kondo and REKY regime is described as the RKKY
coupling J;; changes by integrating S-functions 8; = dJ/dln D and 8;; = dJ;;/dIn D.
By comparing the scaling theory with numerical diagonalizations, we show that for small
Ji; & Tk, the spin-excitation energy is given by AE =~ T exp(-~qa J;;) where o is a constant,
and for large Jj; in the antiferromagnetic RKKY regime we find a power law AE == (1/ J,'j)"".
In the intermediate regime, the exponential law ceases to apply and A E assumes power-law
behaviour.

This paper is arranged as follows. In section 2, we present a scaling theory by a
diagrammatic method. In section 3, we compare the numerical diagonalizations with the
scaling properties in section 2 and discuss their relevance. The last section is devoted to a
discussion and a summary.

2. Scaling properties

2.1, Perturbation expansions
The model Hamiltonian of interest to us is the two-impurity Anderson mode],

H= ZE,QC‘EGCICG + €5 Z f}:mfidm +V Z(cik-R, C;;.ﬁam -+ HC)
ko

torm kiam

+U Z ot FiomFE Fratm (m, o) # (m',o"). (2.1)
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The subscript { labels the impurity situated at B, ({ = 1,2). The conduction-electron
operators are represented by cs and local f electron operators by fs. We shall restrict
ourselves to the case where U = oo, i.e. the doubly occupied sites are excluded. The iocal
level e will be assumed to lie well below the Fermi level of the conduction-electron band.
Note furthermore that we assume the spin—orbit degeneracy N to be large so 1/N is a good
expansion parameter. We believe that the two-impurity Kondo system is a good starting
point from which to investigate heavy fermions when N is large. '

The perturbation expansions of the Anderson model in atomic limit have been
extensively investigated by many authors [19-29]. It is known that each term in the
perturbation series shows logarithmic divergence. Logarithmic dependence on a high-energy
cutoff is the characteristic property of a renormalizable theory, where the cutoff dependence
tells us how the parameters change when the cutoff D is reduced to D —dD by integrating
out states with energies D — dD < |w| < D. One may derive the scaling equation by
retaining the divergent terms in each order of hybridization. In the process of truncation
of the cutoff new couplings are generated. However, new couplings that vanish in the
limit D — oo are irrelevant in the sense that we can safely neglect them. In deriving the
scaling equation, it is important to note that the hybridization strength A (= Nwp V) is
unrenormalized by scaling; more exactly renormalization of A vanishes in the limit D — oo
[15].

The perturbation theory in strongly correlated electron systems has some difficulties
since the electron operators obey neither boson nor fermion commutation. relations.
However, the generalization of Wick’s theorem enables us to reduce the expectation values
into a sum of graph terms [20, 21]. Some formulae are shown in appendix A.

In the leading order of 1/, the RKKY interactions do not affect processes of the scaling
theory. We can easily evaluate the energy levels of the vacuum and occupied states, Ej and
E¢, for the single-impurity Anderson model [20]:

A D 1 A D '
= —J=1 J? 2 2.2
Eg Jrhn pap— +NJJT nef_20’+0( L 1/ND (2.2a)
1A D
Er=¢— ——1 oW, 1/N? 225
£=c NJTHE[‘—“EQ’-'_( /N7 ( )

where T, denotes the self-energy of the f-state Green function of the order of (1/N)°.
In figure 1 we show the diagrams contributing to Ep, where the full curves and broken
curves denote f-state and conduction-electron Green functions, respectively. The wavy line
represents the |0)-state propagator defined by D@ (v) = —1/(v +18). (See appendix A.)
Both Ey and ¢ are reduced, but the shift of e is smaller by an order of 1/N. Thus the
effective level of f electrons rises as scaling proceeds. Following the usual definition of
the s—d coupling J = —A /n(E; — Ejp), we obtain easily 8y =dJ/dln D = —~J* + J3/N,
which is known to be comrect up to O(J%) [30].

Now let us consider the RKKY interaction effects. In figures 2(a)-(d) we show the
processes of order V* considered: '

Fe 2 fe
i ey e (2.3a)
_ Z - Z JeSe ik )R —R)) (2.3b)

o e (& — € e — )
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Figure 1. Diagrams contributing to Ep. The full curves  Figure 2. Intersite contributions of the order of V4, §
denote the f-state Green function and the broken curves  and j denote the site indices.

represent the conduction-electron Green function. The

wavy lines show the propagator D () = —1/{v+18).

A sum of these contributions in figures 2(a)—(d) are shown by Feynman diagrams in
figures 3(a) and 3(b). We can identify the terms in figure 3(a) as arising from single-site
processes. Figure 3(b) represents an intersite term which is evaluated as

£ <L S [ 22 60 0761 Gru e
kk’mu'
1 { AN 7 _cos(2keR) 1,
=—=}|—) =D—" = —JiDF(R 24
N (nef) 2 (k[:R)3 N ( ) ( )
where Jp = —A/mer and R is the distance between two localized spins sitvated at R; and

R;. R = |R;—R;|. This formula is derived in the kR 3> D/|e;] region. For kpR & D/|es,
the RKKY term follows a 1/R? law

7 sin(2kpR)

RKKY
J
Eo slerdy 2 (keR)2

2.5)

Gf,f'}, () and Gy, (w) denote the unperturbed Green functions of f electrons and conduction
electrons respectively,

1

(o) -
60 = —— 2.62)
Gim(e) = —— Je (2.6b)

W~ +18 w—e —16
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Thus E, rises when F(R) > 0 and is reduced when F(R) < 0. It is an easy way to include
excitations due to mixing processes, which we show in figures 4(a) and (b); figure 4(a)
shows explicit In D dependence:

dew Cr LR P #
el f 22 (6O (@) Cro @) Gy (@) RI_1y T T
pee J 2mi ittt €k €F
2 .m _cos(2keR) D
=P p T |2 . .
N2 TRy e @7
e i
a b a b

Figure 3. Diagrams responsible for intersite interac-  Figure 4. Higher-order diagrams contributing to Ep.
tions up to the order of V4.

The contribution in figure 4(b), which is the electron—hole excitation above the Fermi
level, is smaller by an order of 1/N. In a similar way, we can take into account the
intersite corrections to ¢;. We have only to notice that we have a negative sign when two
spins separated by a distance R are antiparallel and a positive sign when two spins are
parallel. The process corresponding to figure 3(b) gives

1
ERKKY — SORﬁJgDF(R) (2.8)

where Spg is -1 for parallel spins and —1 for antiparallel spins. Then the effective levels
read |

D 1 D 1 .w _cos(2kgR)
Eg=——1 —J=1 —Jip s 2.
o= Mg TV e TN 2 T wer) (292
D 1 A D 1 .m cos(ZkpR)
Er=e— —=1 T2 || 4 S P E SR o g
P g Moo TN T e ml TN TP TRy (2.95)

When cos(Zip&) > 0, two spins a distance R apart form an antiferromagnetic state.
The condition cos(2kgR) > 0 shows that the vacuum energy Eg is pushed up due to
intersite-interaction effects, which stabilizes the antiferromagnetic state. In the other case
where cos(2krR) < 0, the pair spins form a ferromagnetic state. This state is, however,
unstable relative to the Kondo-spin-quenched state because Ep acquires the energy gain
being proportional to J2?cos(2kgR)/N. Thus it follows that the ferromagnetic ordering is
unstable in heavy-fermion systems. This observation predicts that ferromagnetic heavy-
fermion materials are difficult to observe in zero magnetic field. In figure 5 we show
schematic drawings of energy levels to help our understanding.
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Figure 5. Schematic drawings of energy levels. (a) and (b} are for the antiferromagnetic intersite
couplings and (c) is for the ferromagnetic case. In (a), for Tg > J;, the ground state is a Kondo
singlet and in (b), for Tx < J;j, local spins are antiferromagnetic in the ground state,

2.2, Scaling equations

In the following we pay attention to the antiferromagnetic case because as seen from figure
5(c) there is some ambiguity in defining the intersite coupling J; for the ferromagnetic case.
Here we define J;; by J; = (1/NY)J2DF(R) where F(R) = (/2)cos(2keR)/(keR)>.
Then the 8 functions read

Br ==J1 = (I/N)J — (N/BY] (2.102)
Bij=—-(+2NJy. (2.10b)

Ji; works to reduce 8, since Ji; (> 0) increases as the high-energy cutoff D is reduced.
It is natural to expect that J;; decreases due to local spin fluctuations, which are, however,
smaller by an order of 1/N. Since we obtain J; D = Jg. Dy according to (2.108), J in the
weak-coupling limit is expressed as follows:

J = Jo/11 = JoIn(J;;/IN). 211

We denote the critical coupling of Jy by Jg such that both J and J;; go into the strong-
coupling regions simultaneounsly. Since from (2.11) we easily obtain J§ = 1/{ln NZ +
In[1/(J§)1}, the following relation holds:

(1/NYAUDo & Doexp(—1/J5) @2.12)

i.e. Jf,. ~ Tx for Jy = J§. If Jy < Jg the magnetic state will be reached before the system
goes into the strongly coupled Kondo regime.

Now we consider the low-energy scale of heavy fermions and try to characterize the
Kondo and RKKY regimes quantitatively. Let us denote a scaling invariant by M. Miny
satisfies the scaling equation dMy,, /dIn D =0, or

(3/31n D + B;8/37 + Bi;8/8J;j M, = 0. (2.13)
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In the scaling limit the physical properties are expected to depend on the scaling invariant
Miny. Thus it is important to explore the behaviour of M,,. Some limiting cases
are easily examined. In the limit where J;; is small and 8;; = 0, M, is given by
My & D7 e exp(—aNJ;j/A). Min shows an exponential behaviour in the Kondo
regime, The local spin fluctuations work to increase J while the RKKY interactions produce
effects to reduce J. At the point where the two effects offset each other, 8; should vanish.
At the zero of By,

(3/81n D — J;;8/3J;;) Myyy = 0. (2.14)
Then it turns out that My, obeys a power law Mgy & 1/Ji;. In the next section, by exact
diagonalization, we show that the spin excitation gap follows the power behaviour. This
observation supports the existence of a zero of 8;. The zero of 8; indicates a crossover
phenomenon around this critical point. Our model shows no phase transition because there
is almost no chance that f;; vanishes at the same time. Note that the zero of g, is not a
fixed point of J since the other parameter J;; is moving. If we set up the Hamiltonian for
which we have 8;; = 0, this model may show conformal invariance and we may observe
a phase transition [1]. The conformal properties in this case have been investigated by
Affleck and Ludwig [31].

3. Numerical diagonalizations

It is constructive to compare these predictions with exact diagonalizations in small systems.
Our medel contains the two impurity sites and an L-site conduction-electron ring. We have
L 4 2 sites in total. The transfer parameter ¢ is set to unity: €; = —2cosk. We consider
the half-filled case and with a periodic (or antiperiodic) boundary condition for L = 4n (or
L = 4r 4 2). The magnetic spins are set at nearest-neighbour sites and system sizes are
L =4,6,8, and 10. We employ the Lanczos method [32] to obtain eigenvalues of the lower
excited states accurately even for matrices of large size. The conjugate gradient method is
used to obtain the eigenvectors.

We show in figures 6¢a) and (b) the lowest excitation energy AE versus Ji; for the
Anderson model with two local spins where we have added an exchange term to the
Hamiltonian H. For -small Ji3, AE clearly shows exponential behaviour, and for large
J12, AE decreases in an algebraic manner In AE o —In Jj>. These exact calculations are
consistent with the results of the scaling theory. Thus we can identify the Kondo regime by
the exponential law AE o exp(—a.J;;), and the RKKY regime by the power law, We estimate
o through an extrapolation in terms of the system size in diagonalizations. In figure 7, we
show o versus 1/L for several values of V. Extrapolated values of ¢ in the limit L = oo are
presented in table 1 with the scaling value /A for comparison. op_o, values are evaluated
by the least-squares method with the form o = @r—eo + @1/L +az/L%, It is evident that
o is proportional to 1/A and numerical values agree well with scaling theory. Next we
show the spin-correlation function —{S5%SZ) in figure 8. In the Kondo regime it is greatly
suppressed, indicating that the ground state is approximated by uncorrelated Kondo singlet
states, while in the RKKY regime we find strong spin correlations. In the intermediate region
the spin correlations grow rapidly.

4. Summary

We have derived the § functions of J and Jj; by the perturbation theory in terms of
hybridization. In the large- N limit all non-local spin correlations vanish. Thus it can be
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Figare 6. Spin-excitation energy AE versus Jyz for the Anderson model with two local spins
and L conduction-electron sites. (a) is for small Jiz and (b) is for large Ji2. Parameters are
L = 4 {open circles), 6 (filled circles), 8 (triangles), and 10 (squares}). We set ¥V = 0.5 and
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Figure 7. o versus 1/(L + 2). From the top, V2 = 1/8, 1/, 1/4, 1/3, and 1/2.
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Figare 8. Spin correlation function —(S}.85} versus Jia.

argued that the Anderson lattice state will be approximated by the independent Kondo singlet
states and the intersite interference of order 1/N. This picture shows a similarity with the
two-impurity Anderson model.

In the case without RKKY interactions, our method produces the well known formula
of dJ/dIn D to the order of J*> well. We have shown that the ferromagnetic ordering
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Table 1. Extrapolated values of & and /A for several values of V.

Vi wp—ee WA

178 246 251
6 181 18.8
114 140 12.6
1/3 9.30 9.42
172 5.93 6.29

is unstable compared to the Kondo state, which indicates that we can hardly observe the
ferromagnetic ordering in heavy-fermion compounds in zero magnetic field. On the other
hand, the antiferromagnetic intersite interactions emphasize competition with the Kondo
effect. As scaling proceeds both J and J;; increase. When J,-'} ~: Tk, the crossover
regime is reached where both J and J;; go into the strong-coupling regions simultaneously.
If Tx > Jg, J goes into the strong-coupling region first and thus only weak magnetic
correlations are observed in the ground state. For Tx > Jg-, the Kondo effect dominates
over the RKKY effects.

We have shown that the intersite interactions produce effects which reduce J. When
the effects of RKKY interactions and local spin fluctuations cancel each other, J neither
increases nor decreases; this indicates the existence of a zero of 8;. At the zero of By or
beyond this point, the scaling invariant My, obeys a power law In Mg, o¢ —In Jy;. In fact,
we have shown by numerical diagonalization that the spin-excitation gap shows power-law
behaviour in the RKKY regime, supporting the existence of 8;. Since a zero of both J and
Ji; indicates the existence of a phase transition and a zero of just one g shows a crossover
phenomenon, our model shows a crossover without singularities in the intermediate regime.
In our opinion, the model of Jones et al [1] shows singularities because of the condition
that g;; = 0.

In the weak-coupling limit, the scaling theory agrees well with the numerical
diagonalizations for the two-impurity Anderson medel. We have characterized the Kondo
regime by exponential behaviour such that AE ~ Ty exp(—aJj;), while in the RKKY regime
we obtain the power law AE o 1/ J[-‘}f'. The constant «, evaluated by diagonalizations and
scaling, gives consistent results. The above classification of RKXY and Kondo regimes has
been justified by calculating the spin correlation functions. In fact in the Kondo regime the
moments are quenched and we have a set of uncorrelated Kondo singlet states, and in the
RKKY regime a collective state is formed.
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Appendix A. Formulae for Hubbard operators

We show the basic relations in this appendix. According to Hubbard [33], X, is defined
by

Xpg = PVgl. (A1)
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Here |m) = fX0), |mm’) = fF£¥0) and |0) is the vacuum, where f} is a
creation operator of an f electron with orbital-angular momentum m. X operators obey
(anti)commutative relations,

[Xpr,h Xesle = aqups + Sstrq (A2)
where -+ should be used only in the case where both operaters are fermionic, From now

on we use abbreviations X, = [0)(A| and X; = |A)(0]. We define the contraction of Xy
and X\ as

X0 X5 () =iGR (¢ = 1) A (A3)
where

X)) =e %X, (Ad)

IGP (¢ — ) = 0t — £)eT i8¢0 (A5)

Doy = [Xn X314 = 80 Xo0 + X (A.6)
and

Aua(t) = e GG (A7)

In a similar manner we define
X0 A () = 8,,iG0 (¢t — )X, (1) — 8,,iG0 (¢ — )X, (A.8)
Then we obtain the following relations:
OIT X, ()., Xln(rn)XII(tn-H) e X:;n(tln)l()}
= (017 X0, (1) X} (2 Xan (82) ... X (P20—1)|0}
— {07 X, (0) X} (font) Xy (2) - X (22} X (£24)10)
o (CDTHOIT X, (1) X () X (82)
o X ()X, () - X (820 |0) (A.9)
and
01T X, (1) o X5, (B X;F (nt) - XF (220) A (1)10)
= {0IT Xy, () X} (822) Xo (1) - .. Xf (2n-1) D (£)]0)
— (01T X5, (1) X _ (P} Xip (02) - X, (12n=2) X () e (1) 10)
e (0T X, () A (') X3 (1) - .. X:n(tz,,)IO). (A.10)

The generalization of these formulae to a finite-U/ model is straightforward.
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In the following we show the expectation value of an evolution operator U/ to the order

V4, where unperturbed state ¥ is the Fermi sea occupied by the conduction electrons. The
evolution operator is defined by

tr
Ulte, ) = Texp (——if Hi(t) dt) (A1)
&

where the interaction part of the Hamiltonian is

Hy =V ) (f}cr +HC). | (A.12)
ke

T denotes the time-ordering operator and Hy(¢) = ' Hje~iHot, The f-electron operator is
written as f;} = Xo0 + 0 Xy—o (N = 2 for simplicity).
The ground-state energy is given by the formula

H oo
AE = %(%w(oo, —00)|¥o)s With 7 =f d. (A.13)
~00
The lowest contribution (Y|l |90} is given by
1 o0
WalUtv)® = =3 [ dn dratvol T B (1) B 1) o)
—o00
[+
= f dsy dep V2 Zicf,?’(rl — 13)iGrp (2 — 11). (A.14)
-0 km
Here we have defined G, by
Gimlt — 1) = —ilho| Teem ()3, () W0} (A.15)

Now we denote the singly occupied states as f'-states and the doubly occupied states as
f2-states |d). Then the fourth-order term (vo|U|¥o)™® is written as

g poe
{¥olU (o0, —00) |90} = % f dry dry dts dta (Yol T Hy (1) Hy (12) Hi (13) Hi (24) 190

~—

—i)443f°° a
o —— d# dea dts dey V'
2131 ) 14z diz dig

x kZ ;umTxa,o(zl)xdzoaz)xoaa (#3) Xos, (4)10)

+ 0204 {0|T X0 (11) X, —0 (12) X 05, (13) X 5,4 (£2) |0}

+ 0104{0|T X4~ (1) X 0,0(22) X0y (£3) X —, a (22) 10}

+ 0203 {0|T X510 (61) X, —, (£2) X - 5,0 (13) X 5,023 |0}

+ 0103 {0 T Xa,—5, (1) X0(22) X 5, 4(13) X 5,0 (1) |0)

+ 61020504{01 T Xg,—00 (1) X, (12 X 4 (13) X 5,2 (16)10}]

% (Yol T cryo, (1) Cly (B2)CT, g, (13)EE o () [W0) . (A.16)
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The first term consists of the f!-states only. The contribution is written as
2 o0

1 [+ o]
5 { f dt dn¥? Y i69(t — 6)iG (0 — t;)} de Atz drz deg V*
-0 ko

x 3 GOt — 1)iGho (ts — IGP (1 — 1)iG s (83 — 11)
k]kgo’

—00

%)
+ f dry des dis diy vt

o

x I GO —~ tIGP (84 — B)iGho (s ~ 1IGO (1 = 14)iG 1o (1 — 1)
klkzd

- [ dty dty dry dt4V4 ZiG‘(,.?)(I] - I4)iG(ao)(t4 — fg)inl,,j (s —11)
—co

1
ko,

x Y Gt — 14)iGrg (s — 12). (A1)

kaorz

The first term in (A.17) is a disconnected contribution while the others are connected ones.
The second term in (A.17) also emerges in the non-interacting case and thus contains
contributions from the doubly occupied processes. One can easily be convinced that
these doubly occupied states are cancelled out by the third term in (A.17). Inserting
1 = 8(ty — t3) + 8(23 — t3) in the second term in (A.17), we obtain

L[> . . : .
=) f dn dd daV* Y IGD( — 1) (14 — )G (& — 13)iGro (15—~ 1)
—eo kikzo

X {0(ts — t3) + 0(13 — )}

oo
= — f dy dz diz dea V4 Y 3G (1 = 14)iGye (84 — 1)

—oQ kykoo

x iGP(tr — 1)iGu0 (5 — 1)0(t — B3). (A.18)

Then according to {(A.5), a sum of integrands in the second and third terms in (A.17) is
proportional to
Ot — 1)0(ts — 13)0(2t4 — t35) — B(t1 — 13)0(ty — 13)0(ta — 13)

=8(t) — t)0(ts — 13)0(ts — 15) — B(t; — 13)0(83 — 14)0(ta — B3)6(t2 — 13)

=8(t) — ta)[1 — 8(t2 — 1418 (12 — 13)8(ts — 1)

=8(t; — #4)0(ts — t2)8{t2 — 13) (A.19)
which shows the repulsive effect of correlated electrons, because the propagation of localized
electrons, GO (; ~ 14) and GO(t, —13), cannot overlap due to a factor (t; — ;). Therefore

after cancellation of the doubly occupied states we obtain a simple form. Infroducing the
Fourier transform of the step function

oo
. -1
D@ = f dte™ 6(t) = —— .
v =i - e o(t) B (A.20)
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the energy shift in the limit I = oo reads

BEW =V Y f fz‘;’rd)‘;(G‘“’w»zak,m<w>D‘“J(vJszm(w-u)
kikam

(2)}y,2 EQ_J {0) 2
+ AE@Y ; f (G @) Gin(w). (A.21}

Now let us turn to other contributions in {A.16). The last term in (A.16) vanishes since
X4510) =0 and X, 4|0} = 0. The second term is given by

(0|TX,,t 1) X a0, (23 X0,05 (833 X 0,2 14) |0}
IG(D) (13 = ) )OIT Aoy (1) X -, (22) X oy, d(l‘4)|0)
+1GD (13 — )8y, -0, (01T X,0(t1) Xt =, (12) X0 (£4) 10}
= 1G(t3 — 14)80y, o, lig (ts ~ 1O T (= X0, (1)) X 4~y (12)10)
+ igd(ts — YOIT Xy0(t1) X0, (82 10)]
= = 85— CO (13 — 14)i85" (ts — HOIT X0, (12) X, 0(11) 10}
= — 80P, - 1G Ot — 12)igl (14 — IGY, (1 — 1) (A.22)

where gm’(t —t') is the f2-state Green function defined by [20]

g (t — 1) = (OIT Xoa ()Xo (1)[0) = B(t — r)e  CertIG=1), (4.23)

Then the last five terms in (A.16) lead to

oo
f dy dp des deaV* D GP (13 — 10)igl (s — 12IGD (12 — 11)
-0 kkyo

X [1Gro (@t — 83)iGry, =0 (11 — B3} + 1Gro {1 — 1a)iGrymo (B2 — 13)).  (A24)
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