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Abstraet We study the ground sfate of the mixed-vaience system by renormalization group 
theory and numerical exact diagonalizations. A 1 / N  expansion is applied to examine the 
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction effects. W e  show that the antiferromagnetic 
RKKY interaction Jij grows as scaling proceeds and Educes the strength of s-d coupling J .  This 
propeny clarifies the competition between the local Kondo effect and intersite RKKY interactions. 
Scaling theory predicts that for small Ji, < TK the low-energy scale is given by AE % TKeP’lI, 
and for large J i j ,  A E  iii ( I j J i j f ,  which agree well with ow numerical diagonalizations. In the 
intermediate regime where the Kondo and RKKY effects cancel each other. we discuss whether 
OUT results support the existence of a zem of & = dJ/dln D. 

1. Introduction 

There has been recent interest in the competition between the Ruderman-Kittel-Kasuya- 
Yosida (RKKY) interactions and the local Kondo effects in order to understand the formation 
of the heavy-fermion state [I-71. This problem is important since it may have some 
relevance to the oxide superconductors as well as heavy fermions. It is generally agreed that 
heavy fermions are classified into three groups according to their ground-state properties: 
superconducting, magnetically ordered, or paramagnetic with an enhanced specific heat 
coefficient. The rich magnetic structures found in the latter two cases are often explained as 
being due to competition between the local Kondo effect and the RKKY intersite interactions. 
Many heavy-fermion samples show antiferromagnetic ordering at low temperatures [8,9]. 
Even in the cases categorized as non-magnetic Fermi liquids such as CeA13, the small 
magnetic moments involved are observed [IO]. Another simple question arising from a 
large number of experiments is why ferromagnetic short- or long-range orderings in heavy 
fermions are hardly observed in zero magnetic field. These issues may be explained by 
clarifying the properties of RKKY interactions. 

There are apparently two energy scales Jij and TK where Jij is the RKKY exchange energy 
and TK is the Kondo temperature. We can easily identify two regimes. (i) The Kondo regime 
when the Kondo temperature TK is much larger than the RKKY coupling Ji j ;  in this regime 
the Kondo effect takes place in each individual site with quenching of each local spin. (ii) 
The RKKY regime when TK is much smaller than J i j ;  here a collective state of impurities 
is formed and localized spins are ordered fernmagnetically or antiferromagnetically. Our 
understanding is still qualitative because there is no existing theory capable of treating the 
local Kondo fluctuations and the intersite couplings. 

The purpose of this paper is to investigate the ground state of mixed-valence systems by 
the renormalization group theory [Il-181 and the numerical exact diagonalization method. 
A combination of analytic and numerical methods will provide us with useful information 
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on the heavy fermions. Applying perturbation theory in terms of hybridization in the 
atomic limit [19,20], it appears that the energy shows logarithmic dependence on the high- 
energy cutoff D of the conduction band. Logarithmic dependence is a characteristic of a 
renormalizable theoty, suggesting a scaling property of the model. In the original 'poor 
man's' derivation of the scaling equation 1111, we integrate out the high-energy region 
0 - AD < IwI < D and renormalize parameters to include its effects. Scaling equations 
are defined by 

BJ = d J / d l n D  pjj =dJij /dlnD (1.1) 

where J is the s-d exchange coupling. A zero of both BJ and Aj  shows the existence of 
a phase transition. A zero of just one of them indicates a crossover phenomenon. Note 
that we can set up the simplified model such that no new RKKY couplings xe generated 
by scaling, i.e. Bi j  = 0. For example, the model proposed by Jones et a1 [I]  contains no 
intersite interactions except the one introduced to the Hamiltonian by hand. For a model of 
this kind, a zero of ,B, shows the existence of a phase transition. Thus one can say that in the 
language of scaling theory, Jones er 01 have demonstrated that BJ has a zero. In this paper 
we examine the renormalization of both J and Jaj. Since this approach uses formulation in 
the language of perturbation theory, our equations work well in the weak-coupling region. 
The numerical calculations may make up for any shortcomings. 

We show that scaling properties of Jij sensitively depend on whether the RKKY 
interactions are ferromagnetic or antiferromagnetic. We insist that the ferromagnetic state is 
unstable relative to the momentumquenched state. This may be an important result for us 
in considering the magnetic orderings in heavy fermions. In fact, the above properties tell 
us why we rarely observe ferromagnetic orderings in heavy-fermion materials. In contrast, 
the antiferromagnetic m y  interactions grow in the scaling processes and produce effects 
to reduce J .  A crossover between the Kondo and RKKY regime is described as the RKKY 
coupling J,j changes by integrating p-functions BJ = dJ/dlnD and ,8jj = dJ;j/dInD. 
By comparing the scaling theory with numerical diagonalizations, we show that for small 
Jij << TK, the spin-excitation energy is given by A E  % TK exp(-orJ,,) where 01 is a constant, 
and for large Jij in the antiferromagnetic RKKY regime we find a power law AE % (11 Jjj)".  
In the intermediate regime, the exponential law ceases to apply and A E  assumes power-law 
behaviour. 

This paper is arranged as follows. In section 2 ,  we present a scaling theory by a 
diagrammatic method. In section 3, we compare the numerical diagonalizations with the 
scaling properties in section 2 and discuss their relevance. The last section is devoted to a 
discussion and a summary. 

2. Scaling properties 

2.1. Perturbation expansions 

The model Hamiltonian of interest to us is the two-impurity Anderson model. 
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The subscript i labels the impurity situated at R, (i = 1,Z). The conduction-electron 
operators are represented by cs and local f electron operators by f s. We shall restrict 
ourselves to the case where U = 03, i.e. the doubly occupied sites are excluded. The local 
level cf will be assumed to lie well below the Fermi level of the conduction-electron band. 
Note furthermore that we assume the spin-wbit degeneracy N to be large so 1/N is a good 
expansion parameter. We believe that the two-impurity Kondo system is a good starting 
point from which to investigate heavy fermions when N is large. 

The perturbation expansions of the Anderson model in atomic limit have been 
extensively investigated by many authors [19-291. It is known that each term in the 
perturbation series shows logarithmic divergence. Logarithmic dependence on a high-energy 
cutoff is the characteristic property of a renormalizable theory, where the cutoff dependence 
tells us how the parameters change when the cutoff D is reduced to D -dD by integrating 
out states with energies D - d D  < IwI < D.  One may derive the scaling equation by 
retaining the divergent terms in each order of hybridization. In the process of truncation 
of the cutoff new couplings are generated. However, new couplings that vanish in the 
limit D + 03 are irrelevant in the sense that we can safely neglect them. In deriving the 
scaling equation, it is important to note that the hybridization strength A (= N z p V ' )  is 
unrenormalized by scaling; more exactly renormalization of A vanishes in the limit D + 03 

[151. 
The perturbation theory in strongly correlated electron systems has some difficulties 

since the electron operators obey neither boson nor fermion commutation relations. 
However, the generalization of Wick's theorem enables us to reduce the expectation values 
into a sum of graph terms [ZO, 211. Some formulae are shown in appendix A. 

In the leading order of 1 / N ,  the RKKY interactions do not affect processes of the scaling 
theory. We can easily evaluate the energy levels of the vacuum and occupied states, EO and 
Er, for the single-impurity Anderson model [ Z O I :  

+ OtJ'. l / N z )  (2.2a) 
A D 1 A  D 

Eo=--In - +-J-In - 
X IEf-Zol N x lcf-ZoI 

(2 .26)  

where CO denotes the self-energy of the f-state Green function of the order of ( l / N ) O .  
In figure 1 we show the diagrams contributing to EO, where the full curves and broken 
curves denote f-state and conduction-electron Green functions, respectively. The wavy line 
represents the IO)-state propagator defined by D(O)(u) = -l/(u +is). (See appendix A.) 
Both EO and Ef are reduced, but the shift of Ef is smaller by an order of 1/N. Thus the 
effective level of f electrons rises as scaling proceeds. Following the usual definition of 
the s-d coupling J = -A/z(Ef - EO), we obtain easily 8, = dJ/dln D = - J z  + J 3 / N ,  
which is known to be correct up to O ( J 3 )  1301. 

Now let us consider the RKKY interaction effects. In figures 2(a)-(d) we show the 
processes of order V4 considered: 

(2 .3b)  
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(2.3~) 

Figure 1. Diagrams contributing to Eo. The full ewes 
denote the f-state Green function and the broken curves 
represent the conduction-electron Green function. The 
wavy lines show the propagator D @ ) ( v )  = -I/(v+iS). 

Figure 2. Intersite contributions of the order of V4. i 
and j denote the site indices. 

A sum of these contributions in figures 2(a)-(d) are shown by Feynman diagrams in 
figures 3(a) and 301). We can identify the terms in figure 3(a) as arising from single-site 
processes. Figure 3(b) represents an intersite term which is evaluated as 

where Jo = -A/rcf  and R is the distance between two localized spins situated at Ri and 
Rj: R = IRi -RjI. This formula is derived in the ~ F R  >> D/I.ql region. For kpR (< D/lef l ,  
the RKKY term follows a l / R 2  law 

1 j-r sin(2kFR) 
NZ 2 (kpR)' ' 

EtKKY = - J l ~ r l -  (2.5) 

GgL(w) and Gko(O) denote the unperturbed Green functions off electrons and conduction 
electrons respectively, 

(2 .6~)  

(2.6b) 
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Thus EO rises when F(R) > 0 and is reduced when F(R) < 0. It is an easy way to include 
excitations due to mixing processes, which we show in figures 4(a) and (b); figure 4(a) 
shows explicit In D dependence: 

a b 

Figure 3. Diagrams responsible for intersite interac- 
lions up to the order of V4. 

Figure 4. Higher-order diagrams contributing to EO. 

The conaibution in figure 4(b), which is the electron-hole excitation above the Fermi 
level, is smaller by an order of 1/N. In a similar way, we can take into account the 
intersite corrections to cf. We have only to notice that we have a negative sign when two 
spins separated by a distance R are antiparallel and a positive sign when two spins are 
parallel. The process corresponding to figure 3(b) gives 

1 
N 

= s,,-J,ZDF(R) 

where SOR is +l  for parallel spins and - 1  for antiparallel spins. Then the effective levels 
read 

A D D 1 ZJT cos(2kFR) 1 A  
+ - J  -D +-J-ln - Eo=---ln - 

IEf-ZoI N JT 1 ~ f - G  N 2 ( ~ F R ) ~  
(2.9a) 

D 1 T cos(2kpR) 
(2.9b) 

1 A  
+-J-In - + S O R - J  - E f = q - - - I n  - I A  D 

N i r  lcf-&l N Z  K I 6 f - X 0 /  N* '2' ( ~ F R ) ~  ' 

When COS(ZFR) =- 0, two spins a distance R apart form an antiferromagnetic state. 
The condition cos(2kFR) z 0 shows that the vacuum energy EO is pushed up due to 
intersite-interaction effects, which stabilizes the antiferromagnetic state. In the other case 
where cos(UipR) < 0, the pair spins form a ferromagnetic state. This state is, however, 
unstable relative to the Kondo-spin-quenched state because EO acquires the energy gain 
being proportional to Jz~os(ZkFR)/N. Thus it follows that the ferromagnetic ordering is 
unstable in heavy-fermion systems. This observation predicts that ferromagnetic heavy- 
fermion materials are difficult to observe in zero magnetic field. In figure 5 we show 
schematic drawings of energy levels to help our understanding. 
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Lbl 

Figure 5. Schematic drawings of energy levels. (a) and (b) an for the mtifer”agnetic intersite 
couplings and (c) is for the ferromagnetic w e .  In (a), for Tn > J r j ,  the gmund state is a Kondo 
singlet a d  in (b), for TK < J i j ,  local spins are antiierromagnetic in the ground State, 

2.2, Scaling equations 

In the following we pay attention to the antiferromagnetic case because as seen from figure 
5(c) there is some ambiguity in defining the intersite coupling Jij for the ferromagnetic case. 
Here we define Jt, by J;, = (1/N2)JzDF(R) where F(R) = ( ~ / ~ ) c o S ( Z ~ F R ) / ( ~ F R ) ~ .  
Then the ,6 functions read 

PJ = -J2[1 - ( I / N ) J  - ( z N / A ) J ~ ~ ]  (2.10a) 

Pij = -(1 +2J)Ji j .  (2.106) 

Jj, works to reduce since Jjj (> 0) increases as the high-energy cutoff D is reduced. 
It is natural to expect that J;j decreases due to local spin fluctuations, which are, however. 
smaller by an order of 1/N. Since we obtain JijD = J;Do according to (ZlOb), J in the 
weak-coupling limit is expressed as follows: 

J = J o / [ l  - JoIn(Jij/J;)]. (2.11) 

We denote the critical coupling of JO by J; such that both J and Jij go into the strong- 
coupling regions simultaneously. Since from (2.1 1) we easily obtain J,E 0 l/[ln NZ + 
In[l/(J;)2]], the following relation holds: 

(l/N)Z(J,E)ZDo zz DOexp(-l/J,E) (2.12) 

i.e. J: zz TK for Jo = J;. If JO < J; the magnetic state will be reached before the system 
goes into the strongly coupled Kondo regime. 

Now we consider the low-energy scale of heavy fermions and try to characterize the 
Kondo and RKKY regimes quantitatively. Let us denote a scaling invariant by Mi.”. Mi.” 
satisfies the scaling equation dMi,,/d In D = 0, or 

( a / a I n D + P J a / a J  +,6ija/aJij)Minv =O. (2.13) 
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In the scaling limit the physical properties are expected to depend on the scaling invariant 
Miov. Some limiting cases 
are easily examined. In the limit where Jij is small and &j  FZ 0, Mi., is given by 
Mi, X D - ’ e ’ l J e x p ( - n N J j j / A ) .  Mi,, shows an exponential behaviour in the Kondo 
regime. The local spin fluctuations work to increase J while the RKKY interactions produce 
effects to reduce J .  At the point where the two effects offset each other, 0, should vanish. 
At the zero of p J ,  

(2.14) 
Then it turns out that Minv obeys a power law M,,, E l / J i j .  In the next section, by exact 
diagonalization, we show that the spin excitation gap follows the power behaviour. This 
observation supports the existence of a zero of P J .  The zero of BJ indicates a crossover 
phenomenon around this critical point. Our model shows no phase transition because there 
is almost no chance that B j j  vanishes at the same time. Note that the zero of ,4, is not a 
fixed point of J since the other parameter Jij is moving. If we set up the Hamiltonian for 
which we have pij = 0, this model may show conformal invariance and we may observe 
a phase transition 111. The conformal properties in this case have been investigated by 
Affleck and Ludwig [31]. 

Thus it is important to explore the behaviour of Mi.”. 

(ala In D - J j j a / a J j j ) y n V  = 0. 

3. Numerical diagonalizations 

It is constructive to compare these predictions with exact diagonalizations in small systems. 
Our model contains the two impurity sites and an L-site conduction-electron ring. We have 
L + 2 sites in total. The transfer parameter t is set to unity: Q = -2 cos k .  We consider 
the half-filled case and with a periodic (or antiperiodic) boundary condition for L = 4n (or 
L = 4n + 2). The magnetic spins are set at nearest-neighbour sites and system sizes are 
L = 4,6,8, and 10. We employ the Lanczos method [32] to obtain eigenvalues of the lower 
excited states accurately even for matrices of large size. The conjugate gradient method is 
used to obtain the eigenvectors. 

We show in figures 6(a) and (b) the lowest excitation energy A E  versus J I Z  for the 
Anderson model with two local spins where we have added an exchange term to the 
Hamiltonian H .  For small J12, A E  clearly shows exponential behaviour, and for large 
J I Z ,  A E  decreases in an algebraic manner In A E  E -In 512. These exact calculations are 
consistent with the results of the scaling theory. Thus we can identify the Kondo regime by 
the exponential law A E  c( exp(-a! J c j ) ,  and the RKKY regime by the power law. We estimate 
a! through an extrapolation in terms of the system size in diagonalizations. In figure 7, we 
show 01 versus I/L for several values of V. Extrapolated values of 01 in the limit L = 00 are 
presented in table 1 with the scaling value x/A for comparison.  OIL=^ values are evaluated 
by the least-squares method with the form 01 = C Y L = ~  + a l /L  + a2/L2. It is evident that 
01 is proportional to l / A  and numerical values agree well with scaling theory. Next we 
show the spin-correlation function -(SfS$} in figure 8. In the Kondo regime it is greatly 
suppressed, indicating that the ground state is approximated by uncorrelated Kondo singlet 
states, while in the RKKY regime we find strong spin correlations. In the intermediate region 
the spin correlations grow rapidly. 

4. Summary 

We have derived the ,3 functions of J and Ji, by the perturbation theory in terms of 
hybridization. In the large-N limit all non-local spin correlations vanish. Thus it can be 



4070 T Yanagisawa 

Figure 6. Spin-excitation energy A E  versus 512 for the Anderson model with two local spins 
and L conduction-eleetron sites. (a) is for smdl J n  and (b) is for I q g e  JIZ .  Parameters are 
L = 4 (open circles). 6 (filled circles), 8 (triangles), and 10 (squares). We set V = 0.5 and 
f r  = -2. 

ll(Lt2) 

Figure 7. U versus l/(L + 2). From the top. V2 = 118. 1/6, 114, 1/3, and In. 

J,> 

Figure 8. Spin correlation function +:Si) versus J n  

argued that the Anderson lattice state will be approximated by the independent Kondo singlet 
states and the intersite interference of order 1/N. This picture shows a similarity with the 
two-impurity Anderson model. 

In the case without RKKY interactions, our method produces the well known formula 
of d J /d  In D to the order of J 3  well. We have shown that the ferromagnetic ordering 
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Table 1. Extrapolated values of n and nfA for several values of V 

407 1 

V 2  ( I L = ~  =/A 

1/8 24.6 25.1 
1/6 18.1 18.8 
U4 14.0 12.6 
1/3 9.30 9.42 
If2 5.93 6.29 

is unstable compared to the Kondo state, which indicates that we can hardly observe the 
ferromagnetic ordering in heavy-fermion compounds in zero magnetic field. On the other 
hand, the antiferromagnetic intersite interactions emphasize competition with the Kondo 
effect. As scaling proceeds both J and Jij increase. When J$ R! T,, the crossover 
regime is reached where both J and Jlj  go into the strong-coupling regions simultaneously. 
If TK =- J:, J goes into the stmng-coupling region first and thus only weak magnetic 
correlations are observed in the ground state. For TK >> J$,  the Kondo effect dominates 
over the RKKY effects. 

We have shown that the intersite interactions produce effects which reduce J .  When 
the effects of RKKY interactions and local spin fluctuations cancel each other, J neither 
increases nor decreases; this indicates the existence of a zero of P J .  At the zero of P J  or 
beyond this point, the scaling invariant Minv obeys a power law In Minv a -In J j j .  In fact, 
we have shown by numerical diagonalization that the spin-excitation gap shows power-law 
behaviour in the RKKY regime, supporting the existence of 0,. Since a zero of both J and 
J i j  indicates the existence of a phase transition and a zero of just one ,3 shows a crossover 
phenomenon, our model shows a crossover without singularities in the intermediate regime. 
In our opinion, the model of Jones et a1 [ I ]  shows singularities because of the condition 
that p;j = 0. 

In the weak-coupling limit, the scaling theory agrees well with the numerical 
diagonalizations for the two-impurity Anderson model. We have characterized the Kondo 
regime by exponential behaviour such that A E  % TK exp(-aJjj), while in the RKKY regime 
we obtain the power law A E  cx 1,'J:. The constant 01, evaluated by diagonalizations and 
scaling, gives consistent results. The above classification of RKKY and Kondo regimes has 
been justified by calculating the spin correlation functions. In fact in the Kondo regime the 
moments are quenched and we have a set of uncorrelated Kondo singlet states, and in the 
M Y  regime a collective state is formed. 
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Appendix A. Formulae for Hubbard operators 

We show the basic~relations in this appendix. According to Hubbard [33], X, is defined 
by 

x p q  = IP)(QI. (A.1) 
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Here Im) = f,+lO), Imm') = fgfL10) and 10) is the vacuum, where fz is a 
creation operator of an f electron with orbital-angular momentum m. X operators obey 
(anti)commutative relations, 

[X,,, Xr.& = 6,rXps * 6,Xrq ( A . 2  

where + should be used only in the case where both operators are fermionic. From now 
on we use abbreviations Xi = lO)(Al and X: = IA)(Ol. We define the contraction of XA 
and XL as 

X~(t).Xz(t')'  = iG:')(t - f')Aph(f') (A.3) 

where 

and 

In a similar manner we define 
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In the following we show the expectation value of an evolution operator U to the order 
V4, where unperturbed state @O is the Fermi sea occupied by the conduction electrons. The 
evolution operator is defined by 

ti) = T exp ( - i L'' HI@) dt) (A.ll) 

where the interaction part of the Hamiltonian is 

(A.12) 

T denotes the timeordering operator and HI@) = eiHo'Hle-iHot, The f-electron operator is 
written as f: = Xso + gxd,-,  (N = 2 for simplicity). 

The ground-state energy is given by the formula 

(A.13) 

(A.14) 

Here we have defined Gkm by 

Gkm(fl - td = -~(@OIT~~~(~I)C~(~Z)I@O). (A.15) 

Now we denote the singly occupied states as fl-states and the doubly occupied states as 
P-states Id). Then the fourth-order term ( @ o l U l @ ~ ) ( ~ )  is written as 

( ~ o ~ o l u ( ~ ,  -00)w00)(4) = dti dtz dt3 dt4(@olTH1 (fi)Hi (tz)Hi  HI (f4)bboo) 

(A.16) 
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The first term consists of the f'-states only. The contribution is written as 

m + 1, dtl dt2 dt3 dt4V4 

(A.17) 

The first term in  (A.17) is a disconnected contribution while the others are connected ones. 
The second term in (A.17) also emerges in the non-interacting case and thus contains 
contributions from the doubly occupied processes. One can easily be convinced that 
these doubly occupied states are cancelled out by the third term in (A.17). Inserting 
1 = B(t4 - t 3 )  + e ( t 3  - t4 )  in the second term in (A.17). we obtain 

x icLo)(tz - t3)ick,.,(t3 - tl)e(t4 - t3). (A.18) 

Then according to (AS), a sum of integrands in the second and third terms in (A.17) is 
proportional to 

e(tl - t4)e(t2 - t3)e(t4 - t3)  - e(tl - i4)e(tz - t4)e(t4 - t3) 

= e(tl - t,)e(rz - r3)e(t4 - t3) - e(rl - t4)e(tz - t4)e(t4 - t3)e(tz - t3) 

= e(tl - 4 ) [ 1  - e(tz - t4)ie(tz - t3)e(t4 - t3) 

= e(tl - t4)e(t4 - tz)e(tz - t3) (A.19) 

which shows the repulsive effect of comelated electrons, because the propagation of localized 
electrons, Gko)(tl -r4) and CLo)(tz-t3), cannot overlap due to a factor e(t4 - t ~ ) .  Therefore 
after cancellation of the doubly occupied states we obtain a simple form. Introducing the 
Fourier transform of the step function 

-1 
v + i8 

m 

dteiY'B(t) = - (A.20) 
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the energy shift in the limit CI = 00 reads 

(A.21) 

(A.22) 

where gio)(t - t') is the fz-state Green function defined by 1201 

(A.23) ig;O)(t - t ') = (OITXod(r)Xdo(t')lO) = e(t - t')e- i(%t+U)(:-r') 

Then the last five terms in (A.16) lead to 
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